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Project Outline
"Optimizing Sparse Mean-Reverting Portfolio" by Sung Min Yoon

Sparse Optimal Portfolio (SDP solution) Goa IS
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e Build mean-reverting portfolios with fastest
10or mean-reversion behavior.

T * Incorporate constraints: minimum variance and

0t N - sparsity.

e Use Semidefinite Programming (SDP) for
optimization.
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el * Back-test the results with real financial data.
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Brief Overview
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The Math

Conversion from convex problem to linear
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Mean-Reverting Portfolio and Predictability

1. Predictability Definition (Box & Tiao, 1977):
yT A, A5 ATy
Aly) = T A
y Aoy
» Ay Lag-0 autocovariance matrix.

» A;:lag-1 autocovariance matrix.

» 1y Porifolio weights vector.

0.3 (AAPL)
y = |0.5(NVDA)
0.2 (MSFT)

This weight vector is a sample (not optimized) allocation, where:
* 30% of the portfolio is allocated to AAPL,

o 50% to NVDA,

s 20% to MSFT.

Objective Function:

In the original portfolio optimization, the objective involves minimizing the quadratic form:

y' My

where M is a constant matrix related to predictability.

By introducing a matrix ¥ = yy?, the quadratic form can be rewritten using the trace:

y' My = Tr(MY)

Now the objective becomes linear with respect to Y, which makes the problem solvable using

semidefinite programming (SDP).

min MY)+
P AAPLS in Tr(MY) + p|| ],
Iy = | TNVDA S.L. g:%igiﬁ 21?
TMSFT t Y . 0

M = A,A;'AT and v is the minimum variance we want to achieve

Lag-1 Autocovariance Matrix A4,

Lag-0 Autocovariance Matrix A4y
The Lag-0 covariance matrix captures the variance and covariance between the returns of assets at

the same time 1:
Var(X,, X)) Cov(X,X;) Cov(X,X3)
A(} = COV(XQ, Xl) VaI(Xg,Xz) COV(XQ., X;;)
Cov(X3, X1) Cov(Xy, X2) Var(Xs, Xa)
e X ;:Returns of AAPL

e X, Returns of NVDA

o X4 Returns of MSFT

Explanation:
» Diagonal elements represent the variance of each asset (e.g, Var(X |, X)) = variance of
AAPL).

» Off-diagonal elements represent the covariance between pairs of assets (e.g., Cov(X,;, X3) =

covariance between AAPL and NVDA).

The Lag-1 covariance matrix captures the covariance between returns at time ¢ and time ¢t — 1:

Cov(Xi™H Xt)  Cov(XI1 XE) Cov(XIH, XY)
Ay = |Cov(Xi XY Cov(Xi', XE) Cov(X3!, Xi)
Cov(Xi1 X1 Cov(XI7, XE) Cov(Xi™!, XY)

. Xffl: Returns of AAPL at time ¢ — 1.

. X{: Returns of AAPL at time ¢.

Explanation:
® Lag-1 measures how returns from the previous period (t — 1) relate to returns in the current
period ().
o Off-diagonal elements like Cov(X} ™", X2) show how the past returns of one asset (AAPL)

affect the current returns of another asset (NVDA).




Back-test - How It Works (1/3):

- Step 1: Data Preparation
— Input Stock Selection: Choose specific stocks (e.g., AAPL, AMZN, etc.).

— Fetch Data: Pull 5 years of historical stock prices for the selected stocks from the S&P 500 using the
write_sp500_data function which calls the Robinhood API.

— Load Data: Read the stock data into a Pandas DataFrame for analysis.

- Step 2: Portfolio Initialization

— Optimal Weights: Use the get_optimal_weights function to calculate weights for each stock in the
portfolio.

— Investment Allocation: Assign the initial investment amount across stocks based on calculated weights.

- Step 3: Portfolio Value Calculation

— With Rebalancing: Reallocate portfolio weights periodically, in our case weekly, to maintain our
calculated target weights.
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Back-test - How It Works (2/3): o

- Step 4: EWMA and Bollinger Bands

— EWMA (Exponentially Weighted Moving Average): Tracks the portfolio's average value over time. We
used the 20 day EWMA.

— Bollinger Bands: Identify overbought/oversold conditions using upper and lower bands based on price
volatility. The bands are set to 2 standard deviations from the EWMA.

- Step 5: Trade Tracking
— Entry/Exit Signals:
— Long Entry: Buy when the portfolio value drops below the lower Bollinger Band.

— Short Entry: Sell short when the value rises above the upper Bollinger Band.
— Exit Positions: Exit trades when the value crosses back over the EWMA.



Back-test - How It Works (3/3):

- Step 6: Visual Analysis

Performance Visualization:

Plot portfolio value, EWMA, and Bollinger
Bands.

Mark trades on the graph (e.g., "Open Long,'
"Close Long") and track cumulative
profit/loss.

Comparison to Benchmark (SPY): Add S&P
500 ETF data to evaluate relative
performance.
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Back-test — ||

ustration (1/2):

Cumulative PnL with Trades
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Back-test — lllustration (2/2):
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Stock Weights:
GOLD: 7.56%
SRPT: 92.44%

Total Trades: 34




Potential Future Improvements

Higher Frequency Data
— Use hourly or minute-level data for intraday trading.
— This can capture faster mean-reverting opportunities.

Better Rebalancing Period
— Daily, Weekly, or Custom Adaptive periods.

Better Stock Selection Using PCA

— Reduces dimensionality by choosing the most influential stocks.
— Captures key market movements with fewer assets.

Dynamic Regularization
— Optimize p (sparsity) and v (minimum variance) dynamically over time.
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